Multi-scale modeling of electronic spectra of three aromatic amino acids: importance of conformational averaging and explicit solute-solvent interactions.
نویسندگان
چکیده
Electronic transitions in the ultraviolet and visible spectral range can reveal a wealth of information about biomolecular geometry and interactions, such as those involved in protein folding. However, the modeling that provides the necessary link between spectral shapes and the structure is often difficult even for seemingly simple systems. To understand as to how conformational equilibria and solute-solvent interaction influence spectral intensities, we collected absorption (UV-vis), electronic circular dichroism (ECD), and magnetic circular dichroism (MCD) spectra of phenylalanine (Phe), tyrosine (Tyr) and tryptophan (Trp) zwitterions in aqueous solutions, and compared them with quantum-chemical simulations. These aromatic amino acids provide a relatively strong signal in the accessible wavelength range. At the same time, they allow for a relatively accurate modeling. Energies and intensities of spectral bands were reproduced by the time-dependent density functional theory (TD DFT). The solvent was approximated by a continuum as well as clusters containing solvent molecules from the first hydration sphere. The ECD signal was found to be strongly dependent on molecular conformation, and the dependence was much weaker in UV-vis and MCD spectra. All spectral intensities, however, were significantly affected by the solvent approximation; especially for ECD and MCD the usual polarizable continuum solvent model did not yield satisfactory spectral shapes. On the other hand, averaging of the clusters obtained from molecular dynamics simulations provided an unprecedented agreement with the experiment. Proper modeling of the interactions with the environment thus makes the information about the molecular structure, as obtained from the electronic spectra, more accurate and reliable.
منابع مشابه
Quantum-Chemical and Solvatochromic analysis of solvent effects on the Electronic Absorption Spectra of Some Benzodiazepine Derivatives
ABSTRACT The solvatochromic behaviour of two ketonic derivatives of benzodiazepine namely 7-chloro-1-methyl-5-phenyl-1,5-benzodiazepine-2,4-dione (Clobazam®) and 5,(2-chlorophenyl)-7-nitro-2,3-dihydro-1,4-benzodiazepine-2-one (Clonazepam®) were analysed in some selected solvents of different polarities using UV-Visible spectroscopy and DFT computational techniques. The solute-solvent interacti...
متن کاملUsing Implicit/Explicit Salvation Models to Theoretical Study Tautomerism in 7H-purine-2, 6-diamine
A theoretical study at the B3LYP/6-31++G(d,p) level was performed on the tatumerization of 7H-purine-2, 6-diamine into 9H-purine-2, 6-diamine. Such a tautomerism can take place via three different pathways namely A, B, and C. The energetic results associated with the gas phase reveal that pathways A, B, and C display a very high activation Gibbs free energy of 45.1, 68.6 and 48.9 kcal/mol, resp...
متن کاملCharacterization and Application of SO3H-functionalized Phthalimide (SFP) as an Efficient and Recyclable Catalyst for the Solvent-free Synthesis of 2-Amino-4H-chromenes
In this research, SO3H-functionalizedphthalimide (SFP) has been prepared through simple reaction of phthalimide with chlorosulfonic acid, and characterized using FT-IR, 1H NMR, 13C NMR, SEM (scanning electron microscopy), mass and TG (thermal gravimetric) spectra. Afterward, the solid acid has been utilized as an efficient, green, heterogeneous and recyclable ca...
متن کاملThe Clusters-in-a-Liquid Approach for Solvation: New Insights from the Conformer Specific Gas Phase Spectroscopy and Vibrational Optical Activity Spectroscopy
Vibrational optical activity spectroscopies, namely vibrational circular dichroism (VCD) and Raman optical activity (ROA), have been emerged in the past decade as powerful spectroscopic tools for stereochemical information of a wide range of chiral compounds in solution directly. More recently, their applications in unveiling solvent effects, especially those associated with water solvent, have...
متن کاملImplicit modeling of nonpolar solvation for simulating protein folding and conformational transitions.
Accurate description of the solvent environment is critical in computer simulations of protein structure and dynamics. An implicit treatment of solvent aims to capture the mean influence of water molecules on the solute via direct estimation of the solvation free energy. It has emerged as a powerful alternative to explicit solvent, and provides a favorable compromise between computational cost ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 38 شماره
صفحات -
تاریخ انتشار 2014